AFLOAT
Adaptive Floats for Climate Resilient, Organic Agriculture and Aquafarming for Marginal Farmers of South Asia Living in Poverty Trap.

South Asian Forum for Environment
A registered civil society organisation for sustainable development and poverty alleviation in the Indian Ecoregion. (Major stakeholder in UN Environment and in consultive status with ECOSOC & UNFCCC)
A FLOAT
Adaptive Floats for Climate Resilient, Organic Agriculture and Aquafarming for Marginal Farmers of South Asia Living in Poverty Trap.

An innovative approach for adaptive agriculture and integrated aquafarming to grow fresh and nutritive food over floating trays in inundated coastal and riverine flood plains for marginal communities of South Asia at climate risk.
Executive Summary

Adaptive Floats for Climate Resilient, Organic Agriculture and Aquafarming for Marginal Farmers of South Asia Living in Poverty Trap

The rising population and the increasing food demand, and threats of erratic climatic conditions, impeding the regular crop calendar, it is time that humanity adopts new sustainable approaches with innovation and technology for increased production and maintain consistency of the crop cycle. The project presented here details the “Integrated, multilevel Float-Farming, the futuristic design demonstrating integration of aquafarming, livestock rearing with float-farms, is profitable and sustainable at the same time. The float-farming integrated with aquaculture and livestock rearing as climate-smart agriculture is the intervention of the South Asian Forum for Environment [SAFE], supported by JSDF-GDN. The project is effectively implemented in Majuli, Shivasagar in Assam, Sehera, Bihar and Sunderbans, in WestBengal, India and Bangladesh.

While built on indigenous knowledge, user-friendly technology, and principles of sustainable agriculture, first this project has an explicit focus on addressing climate change, second the farmers training, skill and capacity development considers the synergies and trade-offs that exist between productivity, adaptation and mitigation. The food production chain is intertwined with float-farming for vegetables cultivation, aqua culture that includes fish and crab cultivation along with livestock rearing. It is also aimed at enhancing community resilience through financial inclusion, market linkage and employability of youth and women farmers groups towards inclusivity in the climate smart regenerative agricultural approach. The desired results of ensuring food security, revenue returns, skill and technology advancement are achieved under collaborative partnership with JSDF-GDN, NABARD, Guwahati, and GIZ.

SAFE gratefully thanks JSDF_GDN and the stakeholder partners for your support and partnership, as we scale and replicate the integrated float-farming approach to agriculture in the climate milieu.
Background

In coastal and riverine floodplains of South Asian ecoregion, as in India and Bangladesh, almost every year 35-40% land gets submerged and remain inundated for 6-7 months, putting agrarian livelihood on complete halt that compels two-third of the marginal farmers to temporarily migrate as laborer, wherein women farmers and children become victims of poverty, abuse and gross societal disparity. The float-farming intervention of South Asian Forum for Environment [SAFE], positively address this gross inequity, owing to environmental disasters through alternative adaptive practices such as float-farming and aquafarming. The entry strategy of SAFE, waved through technology innovation and capacity building in hydroponics, float-farming and aqua-culture along with livestock rearing to ‘Leave No One Behind’in the climate milieu, to ensure sustainable livelihood and food security for marginal communities. It also aimed at enhancing community resilience and women empowerment through financial inclusion and strengthening of local institutions, as well market linkage and employability of young farmer’s groups towards inclusive growth.
Objectives

1) To transfer the technology for making, managing, and maintaining “Floating Integrated Agro-aquaculture Module” (FIAM) units to end-users in the flood plains of South Asian ecoregion.

2) To ensure food security and sustainable livelihood to ‘Leave No One Behind’ in the poverty-climate interface by intensifying primary productivity to promote rural entrepreneurship and augment community resilience.

3) To ensure reduction of energy and water footprint in farming practices by using clean renewable energy-driven micro-irrigation system for a sustainable economy and inclusive growth.

4) To include landless farmers and migrant laborers retreating to villages in the post-pandemic period, in the newer technologies of float farming and aquaculture, with built capacities, facilitating alternative and sustainable livelihood in their own villages.

5) To introduce place-based operational guidelines and policy framework for chartering contingency planning and community preparedness during weather extremities and exogenous crises in vulnerable floodplains and coastal habitats.
India:

Sundarban- West Bengal;
Majuli- Assam;
Saharsa- Bihar

65- 70% land is completely submerged in flood waters for 8 months.

77% of agrarian land is inundated forcing the community to temporarily migrate.

Bangladesh:

Shyamnagar ;
Padmapukur ;
Pakhimara

At least 3.8 million people of marginal indigenous agrarian communities suffer from extreme food shortage and livelihood loss.
India: Sundarban- West Bengal; Majuli- Assam; Saharsa- Bihar;
Bangladesh:
Vill: Pakhimara, Padmapukur
Shyamnagar
Addressing Poverty-Inequality Challenge

- Geographical inaccessibility during environmental disaster and distress.
- Climate vulnerability and looming threats on livelihood & food security.
- Ethnic inequality of the indigenous communities, being at the base of economic pyramid.
The Innovation

- **Land on Water**: Improvising floating module for farming & aquaculture.
- **Climate Adaptive**: Solar-run micro-irrigation for reducing power and water footprints.
- **Regenerative Agriculture**: No-tillage organic farming in grow-bags with ‘Slim-soil’.
- **Circular Design**: Integrating livestock and crop diversification and agro-waste recycling
- **Community resilience**: Strengthening local institutions, financial inclusion and insurance
Pilot Phase
(GDN-MIDP)

- Number of indigenous villages sensitized: 27
- No of households reached out: 2500+
 Number of beneficiaries trained: 450

- Total area under Float-farming: 6 Hectares
- Economic Turnover: INR 27.5 Lacs in three cropping cycles
Scalability:

Post Pilot phase, the intervention has been sustainably scaled up nationally in the states of West Bengal and Bihar, as well as internationally, in Bangladesh. In the scale-up phase, the farming technology is upgraded for all crops, growing in adverse weather & contrasting geo-ecological areas. Participatory crop-cycle planning has also been introduced successfully among marginal communities, especially women farmers towards sustainable farming. The practice has been integrated with fisheries in pen and cage, crab fattening, duckery and livestock, as well alga-culture in coastal areas for risk spreading, as well ensuring protein rich food and feed in pandemics. As a core component, strengthened local institutions and credit linking trained farmers, as climate entrepreneurs, has been enabled to reap the profit and scale further.
Replicability:

The intervention has a tremendous potential to replicate in the socioecological production landscape of south and south-eastern Asia, small island states and flood plains wherein sea level rise is a major threat. Float farming is ideal for growing medicinal plants, floriculture or even fodder farming. Since this is a closed-system farming practice, it is also ideal for carbon-neutral regenerative farming and can support vegan urban horticulture, wherein it reduces the urban heat-island effect as well. It is equally potential for family farming in sub-Saharan Africa.
Value Addition

- Credit Linkage to 100 farmers through soft-loan.
- Group micro-insurance coverage of INR 5 Lacs / year for risk coverage.
- Convergence of value chains like cold-chain and digital app for Climate Information Networking.
- Market accessibility and supply chain augmentation.
- Extended services for community health preparedness through telemedicine in post-pandemic period.
Scale-Up Phase: (GDN - JSDF)

- Better structural resilience in FIAM for disaster shock-absorption.
- Soil-free no-till regenerative organic farming in floats to leverage bio-circularity.
- Robust Solar desalination and Micro-irrigation system for climate preparedness.
- Participatory crop-cycle planning and biological pest management
- Integrating farming with aquaculture, aviary and livestock for risk compensation
- Strengthening local institutions with credit linkage and supply value chains
- Crop diversification for economy of scale.
Schematic Drawing for Climate Resilient Float-farming & Aquaculture
Infograph for Climate Resilient Float-farming structure
FIAM: The making of it....
FIAM: The making of it....

https://www.youtube.com/watch?v=OleM-sy5_8E

✓ Social Distancing in a FIAM is by default design.
✓ FIAM is a disaster resilient structure for Cyclone AMPHAN.
✓ FIAM boosts local economy & food security in Lockdown.
✓ Alternative livelihood for migrants, displaced by COVID.
Harvesting vegetables from float farms
Solar light illuminates the float farm after sunset: Working extra miles
Environmental Impact:

Float-farming sustainably intensifies agroecological production and services, as well as conserves agro-biodiversity in captivity in the socio-ecological production landscape, impacted by environmental adversities. In coastal habitats, floats arrest sediments and abate tillage to restore inundated farmlands, protect topsoil loss and prevent cessation of vegetation dynamics, especially micro-flora, during disasters. It also ensures conservation of water resources through wise use, enhances soil organic matter, and restores soil functions by recycling agro-wastes that reduce air pollution impacts too, in the locale. Usage of renewable energy substantially reduces emission footprints thereby making it more climate adaptive.
Sustainable Development:

The new approach to agriculture ensures that the poor and vulnerable are free from poverty and hunger (SDG 1&2), they have equal rights to economic social and natural resources, gender equity in access to appropriate technology and financial services, building better community resilience, and reducing vulnerability to climate-related extreme events. It augments agricultural productivity for marginal indigenous people and implements resilient agriculture that strengthens the capacity for adaptation to climate change. It ensures gender equity and expands international cooperation for capacity-building in water activities and implements integrated water management. Augmenting adaptive capacity to climate hazards and disasters and strengthening institutional capacity on mitigation, adaptation, and impact reduction, promotes mechanisms for climate planning and management, focusing on women, youth, and local marginalized communities.
Participatory
Crop Calendaring
Aquafarming: Integrating fish culture in pen and cage for risk aversion
Crab Fattening

Integration of crab culture in floating box for saline water aquafarming
SUSTAINABILITY ECONOMICS FOR PROJECT AFLOAT (GDN-JSDF) 2020-22

A. INPUT COST SHARING FOR 20-JLG (100 Farmers) FOR FLOAT FARMING & FISH PEN

<table>
<thead>
<tr>
<th>No's</th>
<th>Materials</th>
<th>Units</th>
<th>Rates (INR)</th>
<th>Investments (INR)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPITAL EXPENSES (Total)</td>
<td>Float trays with solar Micro-irrigation</td>
<td>100</td>
<td>9,500.00</td>
<td>9,500,000.00</td>
<td>Values as per project budget.</td>
</tr>
<tr>
<td></td>
<td>Crab cages with Crab</td>
<td>400</td>
<td>450.00</td>
<td>1,800,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capital cost of 100 Fish-Pen installation in 25 ponds</td>
<td>100</td>
<td>5,000.00</td>
<td>5,000,000.00</td>
<td></td>
</tr>
<tr>
<td>OPERATIONAL EXPENSES (Total)</td>
<td>Annual Maintenance of 20 Float farms</td>
<td>100</td>
<td>5,000.00</td>
<td>5,000,000.00</td>
<td>Values as per project budget.</td>
</tr>
<tr>
<td></td>
<td>Seeds and seedlings, Nursery and manures etc.</td>
<td>100</td>
<td>3,500.00</td>
<td>3,500,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cost of fish feed and pen maintenance for 12 months</td>
<td>100</td>
<td>1,500.00</td>
<td>1,500,000.00</td>
<td></td>
</tr>
<tr>
<td>Total Cost (Investments for 100 trays for 20 Joint Liability Group)</td>
<td></td>
<td></td>
<td></td>
<td>26,30,000.00</td>
<td></td>
</tr>
</tbody>
</table>

B. TOTAL AVERAGE INCOME FROM 100 FLOATS & FISH PENS IN 18 MONTHS (4 Crop Cycles Between October 2020- March 2022)

<table>
<thead>
<tr>
<th>No</th>
<th>Annual Production (4 Cropping Cycles)</th>
<th>Total Yield (kg)</th>
<th>Self Consumed</th>
<th>Av. Rate (INR)</th>
<th>Sale Value (INR)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vegetables (Fruits)</td>
<td>13100</td>
<td>75%</td>
<td>50.00</td>
<td>6,55,000.00</td>
<td>Gourds, Okra, Brinjal, Tomato, Chili, Capsicum etc</td>
</tr>
<tr>
<td>2</td>
<td>Medicinal Herbs</td>
<td>1750</td>
<td>35%</td>
<td>160.00</td>
<td>2,80,000.00</td>
<td>Pudina, Thankuni, Methi, Bathni, Pnot</td>
</tr>
<tr>
<td>3</td>
<td>Vegetables (Leaf & Root)</td>
<td>8700</td>
<td>60%</td>
<td>80.00</td>
<td>6,96,000.00</td>
<td>Cabbage, Cauli, Beet, Turnip, Rad, Saak, Patak, Dhania, Sp. Onion, Carrot etc.</td>
</tr>
<tr>
<td>4</td>
<td>Crabs (Grade-A & Grade-B)</td>
<td>470</td>
<td>10%</td>
<td>1400.00</td>
<td>6,58,000.00</td>
<td>Hard shell, both male & female</td>
</tr>
<tr>
<td>5</td>
<td>Fish (IMC- Big Carps)</td>
<td>8800</td>
<td>25%</td>
<td>170.00</td>
<td>14,96,000.00</td>
<td>Rahu, Katla, Mrigel, Tilapia, Raichand, Pangas and other grass carps</td>
</tr>
<tr>
<td>6</td>
<td>Fish (Small carps)</td>
<td>2550</td>
<td>70%</td>
<td>250.00</td>
<td>6,37,500.00</td>
<td>Bata, Polui, Punti, Koi, etc [Self recruit]</td>
</tr>
<tr>
<td>7</td>
<td>TOTAL</td>
<td>35370</td>
<td></td>
<td></td>
<td>44,22,500.00</td>
<td></td>
</tr>
</tbody>
</table>
Income Expenditure Analysis (All Figures in INR)

<table>
<thead>
<tr>
<th>Sl.</th>
<th>Particular</th>
<th>Amount - INR</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Income</td>
<td>2529600.00</td>
<td>Total income after self consumption</td>
</tr>
<tr>
<td>2</td>
<td>Less Reserve Fund (20% of Income)</td>
<td>505920.00</td>
<td>Amount available for re-investment / re-payment</td>
</tr>
<tr>
<td>3</td>
<td>Distributable Profit</td>
<td>2023680.00</td>
<td>Total profit to be distributed equally to 20 JLGs</td>
</tr>
<tr>
<td>4</td>
<td>Per JLG Pay-out after 12 month for 20 JLG groups</td>
<td>101184.00</td>
<td>Av. earning/JLG/year (assuming first 6 months for incubation, as no harvest is there)</td>
</tr>
<tr>
<td>5</td>
<td>Per head pay-out per month</td>
<td>1686.40</td>
<td>Each JLG has 5 members each</td>
</tr>
</tbody>
</table>

Post-ante Credit Linkage: Sustainability Assessment

<table>
<thead>
<tr>
<th>Sl.</th>
<th>Particular</th>
<th>Amount - INR</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Soft Loan Expected from Bank for 20 JLG (in INR) against the FD kept by SAFE from the Seed Fund</td>
<td>2000000.00</td>
<td>This is nearly 3/4th of the investment cost.</td>
</tr>
<tr>
<td>2</td>
<td>Add Reserve Fund</td>
<td>505920.00</td>
<td>This is the brought forward fund</td>
</tr>
<tr>
<td>3</td>
<td>Own contribution received from beneficiaries</td>
<td>500000.00</td>
<td>INR 5000.00 per head X 100 beneficiaries</td>
</tr>
<tr>
<td>4</td>
<td>Total Capital (in INR)</td>
<td>3005920.00</td>
<td>Amount available for investment</td>
</tr>
<tr>
<td>5</td>
<td>Less Operational Expenses for previous year’s set-up</td>
<td>1000000.00</td>
<td>This ensures functionality of previous 20 floats</td>
</tr>
<tr>
<td>6</td>
<td>Fund available for new business</td>
<td>2005920.00</td>
<td>This means 75% augmentation in business</td>
</tr>
</tbody>
</table>

Mode of Repayment of Loan and Sustainable Returns on Investments

<table>
<thead>
<tr>
<th>Sl.</th>
<th>Particular</th>
<th>Amount - INR</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Each farmer paying @ INR 600/month for 36 months</td>
<td>2160000.00</td>
<td>If the loan is duly repaid in 3 years, the amount will draw a simple interest of 2.5% per annum, That is the total refundable amount will be INR 2150000.00, which is affordable. This also saves INR 10,000.00 as insurance premium.</td>
</tr>
<tr>
<td>2</td>
<td>Per beneficiary pay out in the next phase with another 75 floats (that is nearly with 70% increase in income)</td>
<td>2866.20</td>
<td>Therefore, the beneficiary is actually getting a cash flow of INR 3950.00 after monthly repayment of loan instalments of INR 600.00 and as well getting the agro products for own consumption, as free. This augments his household income by 30-33%.</td>
</tr>
<tr>
<td>3</td>
<td>Pay-out from previous phase of 20 floats and pens</td>
<td>1686.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Total fund received now per beneficiary/month</td>
<td>4552.20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Available amount for insurance premium per head/yr</td>
<td>100.00</td>
<td>Opportunity of INR 5 lacs group insurance cover</td>
</tr>
</tbody>
</table>

Indicator of Sustainability

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Particular</th>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Turnover</td>
<td>25,29,600.00</td>
<td>44,26,800.00</td>
</tr>
<tr>
<td></td>
<td>less : variable cost</td>
<td>10,00,000.00</td>
<td>17,50,000.00</td>
</tr>
<tr>
<td>B</td>
<td>Contribution</td>
<td>15,29,600.00</td>
<td>26,76,800.00</td>
</tr>
<tr>
<td></td>
<td>Less : Fixed Cost (Capital cost distributed with 36 months)</td>
<td>5,43,333.33</td>
<td>5,43,333.33</td>
</tr>
<tr>
<td>C</td>
<td>Profit</td>
<td>9,86,266.67</td>
<td>21,33,466.67</td>
</tr>
<tr>
<td>1</td>
<td>Profit Volume Ratio : contribution x100/sales</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>2</td>
<td>Break Even Point : Fixed cost/PV ratio</td>
<td>8,98,546.03</td>
<td>8,98,546.03</td>
</tr>
<tr>
<td>3</td>
<td>Margin of Safety : Profit/PV ratio</td>
<td>16,31,053.97</td>
<td>35,28,253.97</td>
</tr>
</tbody>
</table>
IMPACT

Dr. Manab Chakraborty,
External Evaluator, The World Bank

There is a great deal of enthusiasm on the part of the local population to adopt this new method of farming. One main reason encouraging is the handsome economic return from the floats. The main benefits of float farming are:

- Higher degree of social assurance and increased community resilience, as can be evaluated through change in knowledge, attitude and skills among beneficiaries.

- Women empowerment through capacity building, financial inclusion and community entrepreneurship.

- Year round availability of green vegetables for the household and some small surplus for sale.

- Selection and in-situ conservation of at least 10 cash crops, suitable for hydroponic farming and covering food, feed and fodder.

- A dent in economic stress and involuntary migration of inhabitants as casual laborers in the post disaster phase along with retention of animal assets and feed stocks.

- Enhanced community resilience to recover from environmental disaster.

- Not just climate resilience floats support food security and agro-biodiversity conservation
MAJOR ACHIEVEMENTS:

1. Ensuring food security and livelihood of these climate vulnerable communities to “Leave No One Behind” in poverty-climate nexus by sustainably intensifying primary productivity as well promoting rural entrepreneurship to augment community resilience.

2. It ensured water footprint in farming practices by using clean renewable energy driven micro-irrigation system, budgeted water usage and as well leveraged circular economic benefits from recycling of agrowastes for sustainable economy and inclusive growth.

3. The project is now supported by UNDP under the Adaptation Funding Window, owing to its immense potential as a climate vulnerable area of global south.

4. Float-farming as collective farming was added up with livestock poultry, piggery, duckery farming for risk spreading and subsistence.
CLIMATE-SMART APPROACH TO AGRO-FARMING

The intervention has been a successful farm sector practice in any climate vulnerable areas facing soil quality and profile deterioration, water stress or habitat loss. Along with coastal and riverine floodplains, it is ready to be replicated in mountainous highlands, drought prone areas, even deserts and as roof-top gardens for abating urban heat-island effects. On the other end, it is a technology that can be propounded in all flood prone coastal areas of countries in Asia and Pacific. The revenue linked entrepreneurial model assures sustainable scaling up and replication in larger specs.
Awards & Accolades

- UNDP AFCIA Award 2021
- Awarded World Design Award 2020
- Finalist in Equator Award 2019: UNDP
- Most Innovative Developmental Project Award GDN (World Bank Groups) & JICA, Japan 2018
- Enlisted in Nairobi Work Program of UNFCCC 2018
Acknowledgement

The project ‘AFLOAT’, discussed in this publication, has been generously funded by the Government of Japan through the World Bank-administered Japan Social Development Fund (JSDF), and executed by the Global Development Network (GDN). The views expressed in this article are not necessarily those of the Government of Japan, World Bank, or GDN.

We acknowledge the support of GDN for recognizing this intervention as the ‘Most Innovative Development Project’ by conferring the Global Development Award in 2017.

We acknowledge the support of GIZ Germany during the scaling up phase of this project in replicating it across other varied socio-ecologies of India and Bangladesh, under the aegis of Inequality Challenge Fund.

We acknowledge National Bank for Agricultural and Rural Development, Regional Office Guwahati to support the pilot phase of this project under the FSPF program in Majuli.
SAFE

South Asian Forum for Environment,
is a regional non-profit civil society organization, working at science-society interface
towards sustainable development goals in the Indian ecoregion

SAFE is nationally accredited in India by MoEF & CC, empaneled by Niti Aayog, Govt.of India. SAFE is also a major stakeholder in the UN Environment and enjoys consultative status with ECOSOC, UNDP, UNFCCC, GCF, GEF-CSO and Gender CC. SAFE envisages global partnership in local actions through community-based climate adaptive interventions.

Mission: SAFE works at interfaces between science and society to reach sustainable development, through change management for building inclusive growth, community resilience and empowerment of commons.

Vision: SAFE envisages global partnership in the milieu of climate change for developing an equitable and participatory policy framework, reaching everyone and everywhere with resource management, technology cooperation and knowledge economy

"Quotes"

Dr. Dipayan Dey, *Founder Trustee,* mentioned that the journey of SAFE started in the year 2004, said float farming process and its future advancement and increased capacities and resilience of the farmers amidst climate change, adverse weather conditions, and disasters like floods, cyclones. He further added that it is time that farmers diversify and change their approach to agriculture by adopting new sustainable techniques to combat adverse weather conditions.

Joyashree Roy, *Bangabandhu Chair Professor, Asian Institute of Technology (AIT), Thailand; Founder Adviser, Global Change Programme & SYLFF-JU; Professor of Economics, Jadavpur University* said, towards managing climate risk in agriculture, emphasize is needed on the necessity of food for a nation, the role of SAFE and GDN to give institutional support to the farmers of India, and Bangladesh, was is globally appreciated.

S. Jones Justin, *Deputy Field Director, Sundarban Tiger Reserve, West Bengal,* Float farming project implemented by SAFE in the cyclone-affected area of Sundarban emerges as alternate economic support for the villagers.

G. H. Pailan, *Principal Scientist and Officer-In-Charge, ICAR-Central Institute of Fisheries Education,* said, “Livelihood Opportunities in Freshwater Aquaculture for Marginal Farmers; the main approach was to provide ideas for sustainable aqua farming practices to fight against the challenges due to natural and anthropogenic disturbances."
Supported by:

- UNDP AFCIA
- NABARD RO Guwahati
- Japan Social Development Fund
- Global Development Network
- GIZ Germany

Thank you

South Asian Forum for Environment

176A, Vivekananda Park, Mukundapur, Kolkata - 700 099
Email: office@safeinch.org
website: www.safeinch.org
Phone: (033) 2426 6060